بررسی اثرات تراکم بوته و برگزنی در مراحل مختلف نمو بر عملکرد و
اجزای عملکرد آفت‌افسردان آجیلی

محسن رشدي، ساسان رضوتوست، جواد خلیلی مهدی و نویب حاجی حسنی اصل

چکیده

به منظور مطالعه اثرات تراکم بوته و حذف برگ‌ها در مراحل مختلف نمو، بر عملکرد و اجزای عملکرد آفت‌افسردان آجیلی (رقم بومی) تحت تأثیر تراکم و حذف برگ‌ها در طرح بلکه‌های کامل تصادفی در 32 تکرار

انجام گرفت. این آزمایش طی دو سال متوالی در مزرعه استگن باحث نتایج کشاورزی شهرستان خوی به مورد اجرا

گذاشته شد. تراکم بوته با سطح 30، 40 و 50 هزار بوته در هکتار با عنوان فاکتور اصلی و حذف برگ‌زدایی با مقادیر

صرف (شاهد)، 0.36 و 0.40 درصد و مراحل حذف برگ‌ها در زمان بیان شدند. سطح فاکتورهای فرعی (درصد برگ‌زدایی و مرحله حذف برگ‌ها) انتخاب شدند. نتایج تجزیه واریانس مربوط به نسخه داد

که اثر تراکم بوته بر ارتفاع و قطر ساقه، تعادل دانه در طبق، وزن هزار دانه و عملکرد دانه معنی‌دار بود. تراکم 50 هزار

بوته در هکارد عامل درک‌آمرک می‌گذارد که در طبق برگ، سطح مطلوب و تعادل طبق کافی در واحد سطح تولید نموده، ولی

حداقل تعادل دانه در طبق و وزن هزار دانه را نشان داد. با افزایش درصد حذف در برگ‌ها، از تعادل دانه در طبق و وزن هزار

دانه، عملکرد دانه و شاخص برداشت کاسته شد. حذف برگ‌ها در مرحله گردش‌افسانه تأثیر منفی شدیدی بر وزن هزار

دانه، تعادل دانه در طبق، عملکرد دانه و شاخص برداشت نسبت به حذف آنها در مرحله برای طبق داشت. نتایج دو

ساله تحقیق نشان داد که تراکم آفت‌افسردان آجیلی با تراکم 30 هزار بوته در هکتار با حفظ کامل برگ‌های بوته و

دوام سطح برگ با میزان عملکرد اقتصادی قابل قبولی عاید زارعین منطقه خوی نماید و حذف برگ‌ها در مراحل

مختلف نمک حین با درصد‌های بالاتری توصیه نمی‌باشد.

واژه‌های کلیدی: تراکم بوته، برگزنی، عملکرد، آفت‌افسردان، وزن هزار دانه.

87/12/21

تأریخ پذیرش: 87/8/20

1- استادیار گروه زراعت و اصلاح نباتات دانشگاه آزاد اسلامی واحد خوی

2- مریم گروه زراعت و اصلاح نباتات دانشگاه آزاد اسلامی واحد خوی و دانشجوی دکتری اکولوژی گیاهان زراعی دانشگاه آزاد اسلامی

3- مریم گروه زراعت و اصلاح نباتات دانشگاه آزاد اسلامی واحد خوی و دانشجوی دکتری اکولوژی گیاهان زراعی واحد علم تحقیقات

4- کارشناس ارشد زراعت، دانشگاه آزاد اسلامی واحد خوی و عضو باشگاه پژوهشگران جوان دانشگاه آزاد اسلامی واحد خوی
مقدمه و پرسری منابع

انتخاب رقم سازگار و عوامل پژوهشی مؤثر بر عملکرد و اجزای عملکرد آتاترک‌دانان از جمله تراکم، آراشی کاشت، برنامه و روش آبیاری، تاریخ کاشت و کوددهی در حصول نتایج با تأثیرگذاری می‌باشد (18). برگ‌های آتاترک‌دان حدود ۶۰ تا ۸۰ درصد سطح فتوشیمی کیا را به خود اختصاص داده و هر گونه کاشش یا عدم کارایی آنها توسط عواملی تغییر آئین، بیماری‌ها، اسباب‌های مکانیکی ناشی از حوادث نامساعد از جمله باد ریزش تکنگ، در سایه قرار گرفتن و عوامل کاهش عملکرد را در پی دارد (5). یکی از تناقض افزایش ارتفاع تشکیل برگ‌های جدید در بخش فوتابی کیکه است که برگ‌های جوان با کارایی بیشتر معمولاً در بالای برگ‌های بیه و مسن قرار گرفته و بخش زیادی از نور خورشید را دریافت می‌کند (8). در هکتار مراکز اقدم (۱۳۸۵) تراکم ۵۰۰۰ بونه در هکتار آتاترک‌دان‌هایی با میانگین ۳۱۱ متری بیشترین و تراکم ۲۰۰۰ بونه با میانگین ۲۲۶ متری کمترین ارتفاع گیاه را دارا بودند (9). گچفری و کمکاران (۱۳۸۵) نیز در آزمایش خود گراتش کردن که افزایش کیفی باعث افزایش بیوماس و ارتفاع گیاه شده است. اما قطع طبق و میانگین وزن دانه‌ را کاهش داد (2). عباسی و همکاران (۱۳۸۴) اظهار نمودند که عدم تأثیر سطوح برگ‌زنی بر روی ارتفاع بوته ناشی از توقف رشد طولی بوته طی حذف برگ‌ها در مرحله گرده افشانی (R5) بوده است که با ورود گیاه به مرحله زایشی، رشد رویی آنها تقویت شده و همکاران (۱۳۸۷) معلوم شد که ارتفاع ساقه با برگ‌زنی شدید شده بود (5) ولی در تناول تحقیق عابدی و همکاران (۱۳۸۷) ر۵ کاهش معنی‌داری داشت (6).
افشایی بر عملکرد و اجزای عملکرد آفتایگراند آجیلی بوده است.

مواد و روش‌ها
یک تحقیق طی سال‌های 1383 و 1385 در مرکز تحقیقات کشاورزی شهرستان خوی اجرا شده. این مرکز در 2 کیلومتری شمال این شهرستان یکی از عرض جغرافیایی ۳۸ درجه و ۳۷ دقیقه شمالی و طول جغرافیایی ۴۵ درجه و ۱۵ دقیقه شرقی قرار دارد.

است. منتوت بارداری و درجه حرارت سالانه منطقه به ترتیب ۲۹۵ میلی‌متر و ۱۰ درجه سلسله است. در همدان و در دو سال به صورت طرح اسپلت فاکتوریالی در قالب بلوک‌های کاملاً تصادفی در سه تکرار اجرا گردید. تراکم‌های ۴۰ و ۵۰ هزار بونه در همدان و در سال ۲۰۰۴ کیلوگرم در همدان از تیمار کاملاً برگرگین نموده، این محلات در ضمین اظهار داشتن که حذف برگرگن یک سوم میانی ساقه تأثیر بخشی بر کاشت عملکرد دانه نسبت به حذف یک سوم فواری و تحاری داشته است. در سال ۱۳۸۴، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق روش داشرت‌یک‌کاملاً کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸۴، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸۴، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸۴، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸۴، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸۴، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸۴، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸۴، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸۴، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸۴، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸4، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸4، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸4، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸4، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند. در سال ۱۳۸4، عباسی‌پور و همکاران تاکید در بخش عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R3) و کمترین درصد کاملاً عملکرد را با حذف ۱۰۰ درصد برگ‌ها در مرحله بزرگ شدن طبق (R4) می‌کنند.

1. Holt and Zenter
2. Robinson
3. Muro
نتایج و بحث

ارتفاع بوطه

بررسی نتایج تجزیه واریانس داده‌ها نشان داد که اثر تراکم بر ارتفاع بوطه در سطح احتمال 1 درصد معنی‌دار نبود (جدول 1). به طوری که با افزایش تراکم بوطه در هکتار حداکثر ارتفاع بوطه حاصل شد (جدول 2). با کاهش فاصله بین بوطه‌ها روی رفیف، کاهش رقابت بین سر جذب نور منجر به افزایش ارتفاع بوطه‌ها تا ارتفاع ۳ متر در تراکم ۵۰ هزار بوطه گردید. طبیعی است که بوطه‌های مجاور هم برای جذب عوامل محیطی از جمله نور رقابت شدیدی داشته که این مسئله در تراکم‌های بالای تراکم ترسیم باشد. لذا با افزایش رقابت بین جذب نور فاصله بین گره‌ها طولانیتر شده و بر ارتفاع نهایی بوطه افزوده می‌شود. درصد گردنزی و مرحله حذف آنها تأثیر فاحشی بر ارتفاع بوطه‌ها نداشت. به طوری که اختلاف معنی‌داری بین سطوح مختلف گردنزی در مراحل مختلف نمود مشاهده نگردید (جدول 1).

عباسی، وزن کار (۱۳۸۴) در خصوص اثر گردنزی آفت‌افراشک‌ها بر ارتفاع بوطه به هیچ اثر معنی‌داری از آفت‌افراشک‌ها با کاهش نرسید. به طوری که می‌رسد افتاده بوطه از جمله صفات زنگین‌پوش و قابل به رضم بوده و کمتر از پارامترهای مانند درصد گردنزی تأثیر می‌یابد.

قطر ساقه

مطالعه تناوب تجزیه واریانس، اثر سال و تراکم و اثر مقیاس تراکم × درصد گردنزی × مرحله نمود در سطح احتمال یک درصد بر قطر ساقه معنی‌دار بود (جدول 1). با توجه مقیاسه میانگین داده‌ها حداکثر قطر ساقه (۵/۷ میلی‌متر) در تراکم ۲ هزار و حداکثر آن (۴/۲ میلی‌متر) در تراکم ۵۰ هزار بوطه در مطالعه و در سال دوم آزمایش ۱۶ ارديبهشت ماه بود.

بعد از مرحله روشن و ظهور طبق، بوطه‌ها در مراحل باز شدن طبق (Rg) و گردنه افشانی کامل در کرت‌های فرعی مطلوبیت تیمارهای انتخابی (صارف، ۳۳، ۱۹ و ۱۰۰ درصد) برتگردن شدند. به منظور تعیین عملکرد دانه و اجزای عملکرد تیمارهای در مرحله رشدی فیزیولوژیکی (مرحله‌ای که طبق‌ها زرد و برکنارشک‌ها قهوه‌ای و بودند) ۱۵ طبق پوشانده شده توسط پاکت (برای گل‌گیری از خ '*.رْ‌رْ पृंत) از رنگ‌های مایه‌های هر کرت بعد از حذف حاشیه برادشته شد. ارتفاع بوطه‌ها قبل از بریدن طبق‌ها تعیین گردید. برای برآورد درصد خوابیدگی (ورس) بوطه‌ها در هر کرت، تعداد بوطه‌های خوابیده در مرحله ضایعاتی مایه‌های هر کرت تعداد کل دانه در هر طبق محاسبه شد. پس از جدا کردن دانه‌های فوق طبق، آنها را داخل پاکت‌های کاغذی در آون ۷۰ دقیقه سلسیوس به مدت ۴۸ ساعت خشک کرد و سپس وزن دانه‌ها با دقت یک صدم گرم تعیین گردید. عملکرد دانه در واحد سطح برای تیمار با استفاده از حاصل ضرب وزن دانه هر طبق در تعداد بوطه در متر مربع (تراکم بوطه) به دست آمد. برای تعیین شاخص برداشت تیمارهای آزمایشی وزن خشک اندام‌های هلوی بوطه‌ها محاسبه شده و از نسبت عملکرد دانه به وزن خشک کل اندام‌های هلوی آن تیمار (عملکرد بیولوژیکی) استفاده گردید. برای تجزیه واریانس داده‌های آزمایشی و مقایسه میانگین‌های آنها در مصوب معنی‌دار بودن از MSTATC نرم‌افزار آماری استفاده گردید.
مجله دانش تونین کشاورزی - سال پنجم، شماره 15، تابستان 1388

هکتار بهدست آمد (جدول 2). نتایج حاکی از وجود ارتباط معکوس بین ارتفاع بونه و ساقه می‌باشد (3). به عبارت دیگر با افزایش تراکم بونه، قطر ساقه‌ها کاهش یافته است. اهمیت اساسی این صفت در تحمل وزن طبقه و اندازه مقوامت در برابر ورس است. داشتن قطر ساقه کافی در افزایشگرمان ایجادی برای تحمل طبقه‌های سنگین این گیاه لازم و ضروری می‌باشد. که این مسئله می‌تواند در حفظ طبقه و جلوگیری از نشکستن ساقه‌های مفقود و موجب باشد.

داده‌های مربوط تراکم بونه در دو ترکیب گل‌دره‌ای (محلول نمونه 1385) و جعفری و همکاران (1385) نیز از این آرایه گزارش‌های مشابه اظهار داشتند که یکی از دلایل کاهش عملکرد دانه در تراکم‌های بالا، کاهش قطر ساقه و خوابیدگی بونه‌ها می‌باشد (4).

تعداد دانه در طبقه

تعداد دانه در طبقه تحت تأثیر تیمارهای تراکم بونه، درصد برگزینی، مرحله نمو و اثر مقاول سال در تراکم بونه قرار گرفت (جدول 1). با افزایش تعداد بونه در واحد سطح تراکم 30 هزار بونه در هکتار تعداد دانه در طبقه هم روند افزایشی داشت (جدول 2). در نگاهی با علم بر این که افزایش تراکم منجر به کاهش قطر طبقه شده است، افزایش دانه در طبقه هم‌رسنده با افزایش تراکم منطقه بهنظر نمی‌رسد. اما کاهش قطر طبقه منجر به گردیدن افشاپان بهتر و سریعتر گچ‌ها (قبل از برخورد با هوا) دامنه گرم مرداد و مدل بونه‌ها شده و در نتیجه تعداد دانه‌های پر طبقه افزایش یافته است. همچنین این مسئله را

می‌توان با توجه به تحقیق بهتر مواد غذایی بونه از طریق ریشه و قرار گرفتن فوستری برگ‌ها در جهت بر نمودن طبقه کرک‌کتر نسبت داد. با توجه به معنی دار بودن سال x تراکم بر تعداد دانه در طبقه، بالاترین مقدار این صفت مربوط به تراکم 30 هزار بونه در سال 1385 بود. ولی اختلاف آن با تراکم 50 هزار بونه در سال 1383 معنی دار بود (جدول 3). آنچه مسلم است واکنش این صفت (تعداد دانه در طبقه) به اثرات سال متفاوت بوده است. درصد برگزینی در هر سطح باعث کاهش تعداد دانه در طبقه شد (جدول 2). بهطوری که حذف کامل برگ‌ها موجب شد تا تعداد دانه در طبقه نسبت به تیمار بدون 60 درصد کاهش یابد. در این آزمایش نقش فرآورده‌ای فوستری برگ‌ها در بر شدن دانه حتی پس از دوران گل‌دهی و گردیده افشاپان روشن می‌گردد. عباسپور و همکاران (1385) و مور و همکاران (2001) نتایج مشابهی را مبنی بر کاهش دانه در طبقه تاواه با حذف برگ‌ها گزارش کرده‌اند (5، 16). مرحله حذف برگ‌ها نیز تأثیری در تعداد دانه در طبقه نداشت (جدول 1).

پویاری که حذف دریتر برگ‌ها تعداد بهبودی از دانه در طبقه را کاهش داد (جدول 2). احتمالاً حذف زودتر برگ‌ها به گیاه فرصت داده تا مانع جدیدتری برای اسپیدیالسیون و پر کردن دانه‌ها ایجاد نماید.

وزن هزار دانه

وزن هزار دانه با افزایش تراکم بونه کاهش یافته (جدول 2). در دو ترکیب بهترین دانه در کمترین تراکم بونه حاصل می‌گردد و با افزایش تراکم از 30 هزار بونه از ادغام و وزن دانه‌های آفتابگردان کاسته شد. این موضوع در اثر رقابت شدید درون گونه‌های بین بونه‌ها محدودیت آب، مواد غذایی و نور موجود در آمده است. جعفری و همکاران (1385) نیز گزارش کردند (4).
کردن که که افزایش تراکم بونه از قطر طبق و موسط وزن دانه‌ها کاسته شد (2). در مورد سطح برگنزنی، با افزایش حذف برگ‌ها، کاهش وزن هزار دانه مشاهده شد (جدول 2). این مسئله حاکی از اهمیت زیاد برگ‌ها در تغذیه کامل دانه و پر شدن آنها می‌باشد. به طوری که با حفظ برگ‌ها و دوام سطح برگ بالا بعد از مرحله گردش افزایشی می‌توان سنتگین نریان دانه‌ها را نیز تولید نمود. حذف کامل برگ‌ها موجب کاهش 25 درصدی در وزن هزار دانه شد. زمان حذف برگ‌ها هم در وزن خشک دانه مؤثر واقع شد (جدول 1). چنان‌که با حذف زودتر برگ‌ها (مرحله بارند) شدن طبق وزن دانه نسبت به مراحل دیرتر فرآیند بازیابی بسیار داشته. وزن هر دانه با حذف برگ‌ها در مرحله باز شدن طبق 88 گرم به 83 کیلو-گرم در تیمار حذف برگ‌ها در مرحله گردش افزایشی نسبت (جدول 2). به نظر می‌رسد با حذف دیره‌گام برگ‌ها بیشتر از وزن دانه‌ها کاسته می‌شود.

اثر تراکم عنصر گلیفی درباره ایزوسیسم بر وزن هزار دانه در سطح احتمال یک درصد مشاهده گردیده (جدول 1). مقایسه میانگین اثرات متقابل مذکور نشان داد که در هر سه تراکم مورد بررسی افزایش درصد برگنزنی از وزن هزار دانه افتاگردان کاسته شد و بالاترین وزن هزار دانه در تراکم 30 هزار بونه با عدم حذف برگ‌ها بهدست آمد (نمونه 2). بدیهی است که با حذف بخش‌های فتوستئر کندنه یا تغذیه دانه‌ها علی‌رغم انتقال مجدد مواد از سایر بخش‌ها کامل نموده و موجب کاهش وزن دانه‌ها خواهد شد. به نظر می‌رسد تأثیر حذف برگ‌ها بر تغییرات وزن هزار دانه شدت‌تر از تراکم بونه می‌باشد.
کل گرگها در هر دو سال کمترین عملکرد دانه به دست آمد. زمان عملکرد برگزینی هم بر عملکرد دانه اثر مغذی دارد (جدول 1). به طوری که وقتی گیاه در مرحله گره‌افشانی (R5) برگ‌های خود را از دست داد، عملکرد دانه افت شدیدتری نسبت به مرحله نمو بای شدن طبق (R3) داشت. اشتاینر و همکاران (1987) اظهار داشتند که در موقعیت‌های نمونه‌برداری مربوط به آزمایش کاشت گیاه به داشته باشند.

داده برگ‌ها بزرگ‌تر در این روش اتمام قرار گرفتند. این نتایج حاصل از مقایسه نقاط اثر متقابل حاکی از وجود جذب‌سازنده در دانه به میزان 270 کیلوگرم در هektار در تراکم 50 هزار بوته با حفظ کامل برگ‌ها می‌باشد (نمونه‌داره). داده‌های این تحقیق نشان دهنده عملکرد اقتصادی آفتاگردان به افزایش حذف برگ‌ها می‌باشد. این موضوع حاکی از اهمیت حفظ برگ‌های این گیاه تا این مرحله نمود (رشدگی فیزیولوژیک) برای استرابیتا به‌محصول بالا می‌باشد. مقایسه تیمارهای اثر متقابل سال × تراکم در برگزینی از لحاظ عملکرد دانه نشان داد که بالاترین عملکرد دانه به میزان 790 کیلوگرم در هکتار با تراکم 50 هزار بوته و بدون حذف گیاه به دست آمد (نمونه‌داره). داده‌های همین نمودار به نمودار افزایش عملکرد دانه با بالرین تعداد بوته در واحد سطح طی دو سال آزمایش بوته اثری به هر وقوع برنده شرایط محیطی مطلوبی طی سال 1385 میزان عملکرد دانه در این سال در تامین سطح تراکم و برگزینی به‌مانند بالاتر از سال 1383 (نمونه‌داره).

1. Schneiter
3- رعایت نکات به زراعی از جمله انتخاب تاریخ کاشت مناسب و تراکم مطلوب بوده می‌تواند در زراعت آفت‌برداران آجیلی از بالایی برخورد انجام شود.

و با احتمال احتمال انتقال آفت‌برداران آجیلی با ورود و سنتگان بوده و برای حفظ این طبقه ساخته‌های با ارتقاء و ضخامت مناسب لازم و ضروری می‌باشد.

4- با توجه به فاقدیات دو‌ساله این آزمایش کشت آفت‌برداران آجیلی تا تراکم 30 هزار بوده می‌تواند به بهترین استفاده از حذف برگ‌های مبتنی و فوقانی بوده که به اشتراک وتوزیع زائرين منطقه جمعیتی می‌باشد.

5- انجام تحقیقات گستردگی در مورد نکات به زراعی و به نزدیک زراعت آفت‌برداران آجیلی که با 30 هزار هکتار به عنوان کشت غالب منطقه می‌باشد لازم و ضروری است.

6- امیدواریم با کاربرد یافته‌های تحقیقات عملی کاربردی در سطح مزارع آفت‌برداران آجیلی وضعیت اقتصادی زراعتی منطقه بهبود یابد.

وزن هزار دانه می‌گردد، با کاهش این مقدار از اجزای عملکرد، نسبت عملکرد دانه به عملکرد بیولوژیکی تغییر یافته و یا به عبارت دیگر کم شده است.

نتیجه‌گیری کلی

نتایج حاصل از 2 سال تحقیق را می‌توان بصورت پیشنهادی جهت کاربردی نمودن یافته‌های آزمایشی مطرح نمود و

1- برگ‌های آفت‌برداران به عنوان عمده‌ترین منبع تأمین کننده مواد غذایی سایر اندازه‌های گیاهی از جمله طبق اهمیت بالایی برخورد بوده و با پیش‌بینی با اتخاذ تدابیر مناسب دوام سطح برگ را به خصوص بعد از مرحله گرده افشانی بهبود بخشید.

2- اهمیت برگ‌های بخش‌های مختلف ساقه در تعیین عملکرد دانه آفت‌برداران متفاوت بوده و تا حد ممکن از حذف برگ‌های بخش‌های فوقانی و میانی ساقه تحت هر شرایطی خودداری نمود.
جدول ۱- نتایج تجزیه واریانس مرکب ۲ ساله اثر تیمارهای آزمایشی بر ارتفاع بوته (سانتی‌متر)، قطر ساقه (میلی‌متر)، تعداد دانه در طیق، وزن هزار دانه (گرم)، عملکرد دانه (کیلوگرم در هکتار) و شاخه برداشت (درصد)

شاخه برداشت	عملکرد دانه	تعداد دانه در طیق	وزن هزار دانه	قطر ساقه	درجه	منابع تغییر	آزدا
بی‌گرزنتی	۸۶۸/۲۸/۵۰	۳۸۰/۲۸/۵۰	۱۰۲/۲۸/۵۰	۲۲/۲۸/۵۰	۱	سال + مرحله نمو	۳
سال × بی‌گرزنتی	۸۸/۴۲/۵۰	۸۰/۴۲/۵۰	۶۸/۴۲/۵۰	۴۲/۴۲/۵۰	۲	مرحله نمو	۶
تراکم × بی‌گرزنتی	۸۴/۳۲/۵۰	۸۵/۳۲/۵۰	۳۸/۳۲/۵۰	۱۳/۳۲/۵۰	۱	سال × مرحله نمو	۱
سال × تراکم × بی‌گرزنتی	۸۴/۳۲/۵۰	۸۵/۳۲/۵۰	۳۸/۳۲/۵۰	۱۳/۳۲/۵۰	۱	مرحله نمو	۳
بی‌گرزنتی × مرحله نمو	۰/۰۰/۰۰	۰/۰۰/۰۰	۰/۰۰/۰۰	۰/۰۰/۰۰	۰	سال × مرحله نمو	۳
سال × بی‌گرزنتی × مرحله نمو	۰/۰۰/۰۰	۰/۰۰/۰۰	۰/۰۰/۰۰	۰/۰۰/۰۰	۰	مرحله نمو	۳
تراکم × بی‌گرزنتی × مرحله نمو	۸۴/۳۲/۵۰	۸۵/۳۲/۵۰	۳۸/۳۲/۵۰	۱۳/۳۲/۵۰	۱	سال × مرحله نمو	۳
سال × تراکم × بی‌گرزنتی × مرحله نمو	۸۴/۳۲/۵۰	۸۵/۳۲/۵۰	۳۸/۳۲/۵۰	۱۳/۳۲/۵۰	۱	مرحله نمو	۳
بی‌گرزنتی × مرحله نمو	۸۴/۳۲/۵۰	۸۵/۳۲/۵۰	۳۸/۳۲/۵۰	۱۳/۳۲/۵۰	۱	سال × مرحله نمو	۳
سال × بی‌گرزنتی × مرحله نمو	۰/۰۰/۰۰	۰/۰۰/۰۰	۰/۰۰/۰۰	۰/۰۰/۰۰	۰	مرحله نمو	۳
تراکم × بی‌گرزنتی × مرحله نمو	۸۴/۳۲/۵۰	۸۵/۳۲/۵۰	۳۸/۳۲/۵۰	۱۳/۳۲/۵۰	۱	سال × مرحله نمو	۳
سال × تراکم × بی‌گرزنتی × مرحله نمو	۸۴/۳۲/۵۰	۸۵/۳۲/۵۰	۳۸/۳۲/۵۰	۱۳/۳۲/۵۰	۱	مرحله نمو	۳

* و ** به ترتیب معنی‌دار در سطح احتمال ۵ و ۱٪ درصد

۱ ۱۳۸۸ مجله دانش نوین کشاورزی - سال پنجم، شماره ۱۵، تابستان
جدول ۲- تأثیر عوامل آزمایشی بر میانگین ۲ ساله ارتفاع بوته. قطر ساقه، تعداد دانه در طبق و وزن هزار دانه

<table>
<thead>
<tr>
<th>عامل/فرآیند</th>
<th>فاکتورهای آزمایشی</th>
<th>تعداد دانه در طبق (یازدهمتر)</th>
<th>وزن هزار دانه (کیلوگرم در هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>عامل/فرآیند</td>
<td>فاکتورهای آزمایشی</td>
<td>تعداد دانه در طبق (یازدهمتر)</td>
<td>وزن هزار دانه (کیلوگرم در هکتار)</td>
</tr>
<tr>
<td>تراکم بوته</td>
<td></td>
<td>۳۰ هزار بوته</td>
<td>۵۰ هزار بوته</td>
</tr>
<tr>
<td>درصد برگ‌زنشینی</td>
<td>صفر (شاهد)</td>
<td>۲۳۳ هزار بوته</td>
<td>۲۴۹ هزار بوته</td>
</tr>
<tr>
<td>جری ۱/۹۸ a</td>
<td>۲۵۰/۹۸ a</td>
<td>۲۴۹/۹۸ a</td>
<td>۲۹۱/۸۹ a</td>
</tr>
<tr>
<td>جری ۱/۸۱ b</td>
<td>۱۹۶/۸۱ b</td>
<td>۴۹۸/۸۳ b</td>
<td>۵۹۳/۶۳ a</td>
</tr>
<tr>
<td>جری ۱/۸۱ c</td>
<td>۷۳۱/۸۱ c</td>
<td>۲۹۷/۸۳ c</td>
<td>۲۸۱/۵۶ a</td>
</tr>
<tr>
<td>جری ۱/۸۱ d</td>
<td>۲۸۱/۸۱ d</td>
<td>۲۸۱/۸۱ d</td>
<td>۲۸۱/۸۱ d</td>
</tr>
<tr>
<td>جری ۱/۸۱ e</td>
<td>۴۴۰/۸۱ e</td>
<td>۲۸۱/۸۱ e</td>
<td>۲۸۱/۸۱ e</td>
</tr>
<tr>
<td>جری ۱/۸۱ f</td>
<td>۲۴۹/۸۱ f</td>
<td>۲۴۹/۸۱ f</td>
<td>۲۴۹/۸۱ f</td>
</tr>
<tr>
<td>جری ۱/۸۱ g</td>
<td>۱۴۷/۸۱ g</td>
<td>۱۴۷/۸۱ g</td>
<td>۱۴۷/۸۱ g</td>
</tr>
<tr>
<td>جری ۱/۸۱ h</td>
<td>۱۴۷/۸۱ h</td>
<td>۱۴۷/۸۱ h</td>
<td>۱۴۷/۸۱ h</td>
</tr>
</tbody>
</table>

جدول ۳- مقایسه میانگین‌های اثر متقابل سال × تراکم از لحاظ تعداد دانه در طبق و عملکرد دانه

<table>
<thead>
<tr>
<th>عامل/فرآیند</th>
<th>فاکتورهای آزمایشی</th>
<th>تعداد دانه در طبق (یازدهمتر)</th>
<th>عملکرد دانه (کیلوگرم در هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال ۱۳۸۳</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۳۸۴</td>
<td>۴۰۳/۲۵ b</td>
<td>۱۰۵۳/۲۹ d</td>
<td></td>
</tr>
<tr>
<td>۱۳۸۵</td>
<td>۴۹۸/۴۴ b</td>
<td>۱۰۵۵/۲۹ d</td>
<td></td>
</tr>
<tr>
<td>۱۳۸۶</td>
<td>۴۱۸/۸۳ ab</td>
<td>۱۰۵۴/۴۶ d</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴- مقایسه میانگین‌های اثر متقابل سال × تراکم از لحاظ تعداد دانه در طبق و عملکرد دانه

<table>
<thead>
<tr>
<th>عامل/فرآیند</th>
<th>فاکتورهای آزمایشی</th>
<th>تعداد دانه در طبق (یازدهمتر)</th>
<th>عملکرد دانه (کیلوگرم در هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال ۱۳۸۵</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۳۸۶</td>
<td>۴۵۶/۴۶ a</td>
<td>۱۳۷۸/۳۳ c</td>
<td></td>
</tr>
<tr>
<td>۱۳۸۷</td>
<td>۳۶۹/۸۹ b</td>
<td>۱۶۷۰/۲۵ b</td>
<td></td>
</tr>
<tr>
<td>۱۳۸۸</td>
<td>۳۴۳/۵۰ b</td>
<td>۲۱۱/۲۹ a</td>
<td></td>
</tr>
</tbody>
</table>

توجه: حروف غیرشماره در هر ستون نشان‌گر اختلاف معنی‌دار در سطح احتمال ۵ درصد با آزمون دانکن می‌باشد.
نمودار ۱- مقایسه میانگین های دو ساله اثرات متقابل ترامک بوته درصد برگ‌زیزی و مرحله برگ‌زیزی برای قطر ساقه (برحسب میلی متر)

نمودار ۲- مقایسه میانگین های دو ساله اثرات متقابل ترامک بوته درصد برگ‌زیزی از لحاظ وزن هزار دانه

نمودار ۳- مقایسه میانگین های اثرات متقابل سال‌های درصد برگ‌زیزی از لحاظ عملکرد دانه
رسم 4: مقایسه میانگین‌های دو ساله اثرات متقابل تراکم بوت و درصد برگ‌زنشی از لحاظ عملکرد دانه

رسم 5: مقایسه میانگین‌های اثرات متقابل سال × تراکم × درصد برگ‌زنشی از لحاظ عملکرد دانه

رسم 6: مقایسه میانگین‌های اثرات متقابل سال × درصد برگ‌زنشی × مرحله برگ‌زنشی از لحاظ عملکرد دانه

