اثر تلقیح بذر با کود زیستی نیتراتین بر جوانه‌زی و رشد اولیه کلزا (Sesamum indicum L.)، کندج (Brassica napus L.) و آفتابگردان (Helianthus annus L.)

بهارام میرشکاری و سحر باصر

جهت به‌منظور مطالعه تأثیر تلقیح بذر با کود زیستی نیتراتین در غلظت‌های ۰، ۲ و ۴ سی سی به همراه شاهد آب مقطر بر جوانه‌زی و رشد اولیه کلزا کندج و آفتابگردان، سه آزمایش در دانشگاه آزاد اسلامی واحد تبریز در قalties طرح کاملاً تصادفی در سه تکرار اجرا شد. نتایج نشان داد که وقتی بذر کلزا بعد از افزودن ۲ سی سی نیتراتین کشت شدند، طول ریشه‌ه و طول گیاهچه آن نسبت به شاهد به‌ترتیب ۵۰ و ۶۰٪ افزایش یافت. در تیمار تلقیح بذر کندج ۰ سی سی نیتراتین، طول ریشه‌چه با ۵۰٪ نسبت به شاهد از ۷۵ میلی‌متر رسید. کاکرد ۲ و ۳ سی سی نیتراتین نتوانست طول ساقه‌چه کندج را معادل ۳۱٪ در مقایسه با شاهد را داشته. وقتی بذر آفتابگردان ۲ و ۴ سی سی نیتراتین آغشته شدند، سرعت جوانه‌زی بذر به‌ترتیب با ۴۸ و ۴۶ درصد افزایش از ۲/۹ و ۹/۸ درصد بررسی نمود که بذر کندج بعد از آغشته کردن با ۳ سی سی نیتراتین کاشته شود. اثر تلقیح بذر بر طول گیاهچه آفتابگردان معنی‌دار بود و تیمار آغشته کردن بذر با ۴ سی سی نیتراتین بیشترین طول ساقه‌چه (برابر ۷۲ میلی‌متر) را داشت. به‌نظر می‌رسد که به‌هوش نسبی طول گیاهچه در اثر کاربرد نیتراتین بیانه در سی سی کندج یک‌ویک محدود در شرایط مزرعه تلقیح نشان داشت.

واژه‌های کلیدی: نیتراتین، سرعت جوانه‌زی، کلزا، کندج، آفتابگردان.

تاریخ دریافت مقاله: ۸۸/۰۸/۱۲
تاریخ پذیرش: ۸۸/۰۸/۲۸

1- استادان دانشگاه آزاد اسلامی واحد تبریز، دانشکده کشاورزی، گروه زراعت و اصلاح نباتات.
2- کارشناس ارشد رشته زراعت دانشگاه آزاد اسلامی واحد تبریز، دانشکده کشاورزی، گروه زراعت و اصلاح نباتات.
مقدمه و بررسی منابع

به‌طور کلی از آزمایشگاه‌های سمی‌سازی، خرید از تکنیک‌های موجود در م=DB

۱. Tilak

۲. Rai and Gaur

به‌طور کلی، از آزمایشگاه‌های سمی‌سازی، خرید از تکنیک‌های موجود در م=DB

۱. Kennedy and Tychan

۲. Bacilio

Azospirillum brasilense

۱. Tilak

۲. Baiolo
مولتیکنسنده آن شرکت فرآوری شیمیایی زنجان است، از سازمان نظام بهداشتی کشاورزی استان آذربایجان شرقی تهیه شده بود.
نتایج آزمایش قوه نامیه قبل از مرحله شروع آزمایش نشان داد که بذرهای کاتاکنج و آفتابگردان در ۹۲ و ۹۰ درصد قوه نامیه بودند. ظرف پری دیش و کاغذی صافی بعد از ضدعفونی با الک اتیلیک، به منظور اطمینان از عدم وجود هر گونه آلودگی به مدت ۲۴ ساعت در هوت الکتریکی زیر تشعشع UV استabil شدند. در هر پری دیش ۵۰ بذر سال برای کاتاکنج و ۲۵ بذر سال برای آفتابگردان در منطقه کشتی در همه تیمارها ضدعفونی شده اند با محلول ناشته و شکر آغشته شدند و سپس با نیترایک در غذایهای مورد طراحی تقریب شدند. غذایی نیترایک طوری که در طول کشت قبل که قادر به حیض گردیده به سه گاه بودن، ظرف پری در داخل سه گاههای پلاستیکی به محفظه زیستی روزانه با دمای ۲۵ درجه سلسوس انتقال داده شدند. آزمایش به مدت ۱۰ روز برای هر سه نوع بذر ادامه داشت. با منظور محسیس سرعت جوانزی، ظرف پری دیش از روز دوم تا روز دهم آزمایش هر دو از زیستی کرای و تعداد تار گونه زدہ شمار شدند. در این آزمایش جوانزی سی از نظر ظهور گیاههای حادثه به میزان ۵ میلی متر تعیین گردید. در مراحل مختلف زایشگاه در پنجره، در صورت نیاز، بستری سی از نظر ظهور گیاههای داشت. غذایی نیترایک طوری که در طول کشت قبل که قادر به حیض گردیده به سه گاه بودن، ظرف پری در داخل سه گاههای پلاستیکی به محفظه زیستی روزانه با دمای ۲۵ درجه سلسوس انتقال داده شدند. آزمایش به مدت ۱۰ روز برای هر سه نوع بذر ادامه داشت. با منظور محسیس سرعت جوانزی، ظرف پری دیش از روز دوم تا روز دهم آزمایش هر دو از زیستی کرای و تعداد تعداد تار گونه زدہ شمار شدند. در این آزمایش جوانزی سی از نظر ظهور گیاههای حادثه به میزان ۵ میلی متر تعیین گردید. در مراحل مختلف زایشگاه در پنجره، در صورت نیاز، بستری سی از نظر ظهور گیاههای به دامنه کاتاکنج و آفتابگردان باعث افزایش اضافهی صافی می‌شود.

مولود و روش‌ها
این آزمایش در سال ۱۳۸۷ در آزمایشگاه بیوکولوژی دانشکده کشاورزی دانشگاه آزاد اسلامی تبریز واقع در متغیره که در ۱۵ کیلومتری شرق تبریز اجرا شد. این بررسی شامل سه آزمایش جنگلهای ارگونیک و رکه کجها، تکجه و آفتابگردان بود که به صورت طرح کاملاً تصادفی با چهار تیمار شامل ۳، ۴ و ۵ سی نیترایک به نهایی آن‌ها تکرار در شرایط آزمایشگاهی انجام شد. نیترایک (اکتوابکس) معین قابل حذف در آب است که مهند ایران شان مجموعه‌ای که پنوما Flamespores و Azospirillum spp. Azobacter spp. می‌باشد و تعداد سلول زندگی هر هکتار از مجموعه باکتری‌ها در pp. ۲۳۲۵ سال است (۱۶۷). مجموعه‌ای به‌کار آمده‌‌های جایگذاری کردن بیوتیک معکوس با دارای بودن قابلیت تبیین ترکیبات ارگونیک، با داشتن خاصیت ترشح انواع هم‌مردم‌های منابعی، از نظر بیوتیک و ترکیباتی مانند سیستم‌های گازی که قرار محور رشد ریشه، توسعه بخش هواهای کیفی، مثابح به عوامل بیماری‌زا و نماینده‌های شود. نیترایک مورد برای انجام آزمایش‌های

\[
R = \frac{\sum N}{\sum (T \times N)}
\]

1. EL-Zeiny
2. Phosphorein
3. Microbein
نتایج و بررسی
کازارا
اثر تلخیق بذر با کود زیستی نیترپرزین بر طول رشد همه چند کلری در سطح متوسط 1 درصد معنی دارد (جدول 1). نتایج مقایسه میانگین تیمارها (نمونه) 1 نشان داد که تلخیق بذر با کود زیستی رابین در سطح متوسط معنی‌دار است. این نتایج نشان می‌دهد که تلخیق بذر با کود زیستی نیترپرزین بر طول رشد کلری در سطح متوسط 1 درصد معنی‌دار است.

1. Bacilio
2. Sorial
3. Bhadauria
بر اساس تأثیر مقایسه میانگین تیمارها (نمونه ۲۴)، بین سطح ۲ و ۴ سی. نیترژین از نظر تأثیر روی این متغیر تفاوت معنی‌داری و وجود نداشت. ولی در این دو تیمار طول رشد‌جمه نسبت به شاهد به ترتیب حدود ۹۸ و ۱۰۲ درصد افزایش یافت. در تیمار کاربرد ۴ سی. نیترژین طول رشد‌جمه ۴۸ درصد افزایش نسبت به شاهد از ۲۸ به ۷۵ میلی‌متر رشدی. در کیف تلقیح شده با آزمیخته‌های تغییراتی در مورفولوژی سیستم ریشه‌ای ایجاد می‌شود، به طوری که طول ریشه‌های فرعی و تعداد انتهای‌های افزایش یافت می‌کنند و این امر وسیله‌هادست طبل رشد‌جمه و افزایش جذب آب و میزان ذوب گرد و در نهایت افزایش عملکرد محصول می‌شود (۱۰). آزمایش‌های تولید کربوهیدرات‌ها فرآیند داده و اعتقادات این سرعت رشد و تقدیم سلول و انتقال سلول افزایش می‌یابد و تحت این شرایط گیاه‌ها تولید شده از قدرت رویش بالایی برخوردار می‌شود که این امر در نهایت موجب افزایش محصول می‌شود (۷۱).

1. Kennedy and Tychan
2. Bhadauria
3. EL-Zeiny
4. Puente and Bashan
آفت‌آگران
طول ساقه‌چه در گیاه آفت‌آگران از سطوح مختلف تا در کود پیوسته‌ای نیز تیترین نسبت به دیگر گیاه‌ها و زراعات می‌باشد. اولین بار در سنگ‌های ماستاریکته (جدول ۸) و تناوب متقابلی بین‌الزمانی محقق‌کننده (جدول ۹) حاکی است که تیمار اغلب گردن بذر با ۴ سی‌سی نیترزین بر طول ساقه‌چه برای میلی‌متر از سایر تیمارها فاصله گرفت و در کلس‌آماری دیگری قرار داشت. تجربیات ایالتی داده‌ها نشان داد که ار تقویت بذر با نیترزین بر طول گیاهگی آفت‌آگران در سطح احتمالات ۵ درصد معيار است (جدول ۹). با توجه به تأثیر آفازش نیترزین بر طول ساقه‌چه آفت‌آگران در شرایط آزمایشی، طول گیاهگی آفت‌آگران به خطای موثر که تناوب متقابلی بین‌الزمانی محقق‌کننده (جدول ۹) نیز نشان داد. در اثر تقویت بذر آفت‌آگران با مقدار ۱ سی‌سی نیترزین در محیط آب و شیرین بزرگی به آنها و تلفیق بذر با ۴ و ۲ سی‌سی نیترزین (با نسبت برابر ۱:۱:۸۶) و ۷۴ : ۱۳۸ : ۴۰ از میزان آفازه‌پذیری در برابر طول ساقه‌چه نسبت به بذر نیترزین نسبت به کند بهبود ید. پیشینه که می‌تواند ناحیه زیر پوشش آن نابیند، و در انتخاب ۱۰۰ درصد آفازه‌پذیری می‌باشد. بهبود است که این شرایط گیاه‌های تولید شده از گونه‌های بروخوردار موشده، این امر در نهایت موش آن‌ها به بهبود طول ساقه‌چه این در گیاه زراعی و تأثیر بعدی این تغییرات روی طول و تعداد اشعاعات فرعی ریشه، می‌تواند از اطراف بهبود جذب آب و مواد غذایی بهوزن در مناطق می‌گردد. در افزایش عامل‌کننده بهبود سپیده‌ای در بذر کند تأثیری می‌باشد.

نتایج تجزیه واریانس، تأثیر کاربرد کود پیوسته نیترزین بر سبیل رشدی گیاه ساقه‌چه در آفت‌آگران در سطح احتمالات ۵/۰ درصد می‌باشد (جدول ۵). بر اساس مقایسه میانگین‌ها (جدول ۶) مشخص شد که تیمار دارای پیوسته نیترزین‌های ساقه‌چه و گیاهگی آن قبل توجه بود با توجه به نهایت جوانزی بذر در آفت‌آگران، به‌نظر می‌رسد که بهبود نسبی طول گیاهگی در اثر کاربرد نیترزین بر سبیل رشدی به‌طور کلی می‌باشد.
جدول 1- تجزیه واریانس تأثیر کود زمستانی نترازین بر صفات مورد بررسی در کلزا

<table>
<thead>
<tr>
<th>صفت</th>
<th>درجه</th>
<th>طول ریشه (سانتی‌متر)</th>
<th>طول گیاه (سانتی‌متر)</th>
<th>وزن خشک گیاه (گرمی)</th>
<th>سرعت جوانزی</th>
<th>متوسط</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌های دارای حرف مشابه معنی‌دار در سطح احتمال 5% تندارند.

g

جدول 2- مقایسه میانگین تأثیر کود زمستانی نترازین بر طول گیاه (سانتی‌متر) و نسبت طول ریشه به ساقه‌چه در کلزا

<table>
<thead>
<tr>
<th>طول گیاه (سانتی‌متر)</th>
<th>نسبت طول ریشه به ساقه‌چه</th>
<th>میانگین</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5a</td>
<td>0/3</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>1/6a</td>
<td>0/3</td>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td>1/7a</td>
<td>0/3</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>1/5b</td>
<td>0/3</td>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td>1/6b</td>
<td>0/3</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>1/7b</td>
<td>0/3</td>
<td>1/6</td>
<td></td>
</tr>
</tbody>
</table>

LSD

در هر ستون میانگین‌های دارای حرف مشابه معنی‌دار در سطح احتمال 5% تندارند.

جدول 3- تجزیه واریانس تأثیر کود زمستانی نترازین بر صفات مورد بررسی در کنجد

<table>
<thead>
<tr>
<th>صفت</th>
<th>درجه</th>
<th>طول ریشه (سانتی‌متر)</th>
<th>طول گیاه (سانتی‌متر)</th>
<th>وزن خشک گیاه (گرمی)</th>
<th>سرعت جوانزی</th>
<th>متوسط</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌های دارای حرف مشابه معنی‌دار در سطح احتمال 5% تندارند.

جدول 4- مقایسه میانگین‌های تأثیر کود زمستانی نترازین بر خیز از صفات مورد بررسی در کنجد

<table>
<thead>
<tr>
<th>طول ساقه‌چه (سانتی‌متر)</th>
<th>نسبت طول ریشه به ساقه‌چه</th>
<th>میانگین</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2a</td>
<td>0/3</td>
<td>5/2</td>
<td></td>
</tr>
<tr>
<td>5/3a</td>
<td>0/3</td>
<td>5/3</td>
<td></td>
</tr>
<tr>
<td>5/1b</td>
<td>0/3</td>
<td>5/1</td>
<td></td>
</tr>
<tr>
<td>5/4b</td>
<td>0/3</td>
<td>5/4</td>
<td></td>
</tr>
<tr>
<td>5/6b</td>
<td>0/3</td>
<td>5/6</td>
<td></td>
</tr>
</tbody>
</table>

LSD

در هر ستون میانگین‌های دارای حرف مشابه معنی‌دار در سطح احتمال 5% تندارند.
جدول ۳- تجزیه و ارائه تأثیر کود زیستی پنترازین بر صفات مورد بررسی در افغانستان

<table>
<thead>
<tr>
<th>تغییر</th>
<th>طول ریشه دار ساقه‌چه (میلی‌متر)</th>
<th>طول گیاه دار ساقه‌چه (میلی‌متر)</th>
<th>دو روش تختگی</th>
<th>نسبت طول ریشه دار ساقه‌چه به ساقه‌چه</th>
</tr>
</thead>
<tbody>
<tr>
<td>طبیعی</td>
<td>11/55</td>
<td>14/14</td>
<td>0.23</td>
<td>۴/۷۷</td>
</tr>
<tr>
<td>نسبت</td>
<td>15/۸۷</td>
<td>20/۸۰</td>
<td>0.30</td>
<td>۵/۸۱</td>
</tr>
</tbody>
</table>

در هر ستون میانگین‌های دارای حداکثر یک حرف مشابه اختلاف معنی‌داری در سطح احتمال ۵% دارد.

جدول ۴- مقایسه میانگین‌های تأثیر کود زیستی پنترازین بر صفات مورد بررسی در افغانستان

<table>
<thead>
<tr>
<th>ردیف</th>
<th>نسبت طول ریشه دار ساقه‌چه به ساقه‌چه</th>
<th>طول گیاه دار ساقه‌چه (میلی‌متر)</th>
<th>مصرف ۲۲٪ پنترازین</th>
<th>مصرف ۲۵٪ پنترازین</th>
<th>شاهد (آب مصرف)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۸۸/۱۱</td>
<td>۸۶/۳۰</td>
<td>۶۸/۲۳</td>
<td>۴۶/۵۷</td>
<td>۳۶/۷۳</td>
</tr>
<tr>
<td>۲</td>
<td>۸۹/۲۵</td>
<td>۸۶/۳۰</td>
<td>۶۲/۲۰</td>
<td>۴۴/۶۷</td>
<td>۳۱/۴۸</td>
</tr>
<tr>
<td>۳</td>
<td>۹۰/۴۵</td>
<td>۹۱/۲۰</td>
<td>۶۶/۲۳</td>
<td>۴۴/۵۱</td>
<td>۳۲/۵۰</td>
</tr>
<tr>
<td>۴</td>
<td>۹۱/۶۱</td>
<td>۹۱/۲۰</td>
<td>۶۸/۲۱</td>
<td>۴۵/۵۷</td>
<td>۳۱/۴۸</td>
</tr>
</tbody>
</table>

LSD⁹⁵ = ۴.۷۷

نمودار ۱- مقایسه میانگین تأثیر گل‌نار ان کود زیستی پنترازین بر طول ریشه چه کلزا

نمودار ۲- مقایسه میانگین تأثیر گل‌نار ان کود زیستی پنترازین بر طول ریشه چه کلزا

میرشکاری، ب. اثر تلفق بذر با کود زیستی پنترازین بر جوانه‌زنی و رشد اولیه...
نمودار ۲- مقایسه میانگین تأثیر غلظت‌های مختلف کود زیستی نیتراتین بر ریشه کندج

نمودار ۳- مقایسه میانگین تأثیر غلظت‌های مختلف کود زیستی نیتراتین بر چهارنژه کندج

منابع
۱- آلباف، م. و شکاری، ف. ۱۳۷۹. دانه‌های روغنی: زراعت و فیزیولوژی. انتشارات عمده، تبریز. ۱۸۲ ص.
۲- ایران، ۱۳۸۷. کود بیولوژیک نیتراتین. نشریه شرکت فرآوری شیمیایی زنجان. ۲ صفحه.
۳- خاکاسی، ک. و مکنزی، م. ج. ۱۳۸۰. ضرورت تولید صنعتی کودهای بیولوژیک در کشور. انتشارات وزارت جهاد کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ص. ۵۹۹.
۴- خسروی، م. ۱۳۸۰. کاربرد کودهای بیولوژیک در زراعت گیاهی. مجموعه مقالات ضرورت تولید صنعتی کودهای بیولوژیک در کشور. انتشارات سازمان تحقیقات، آموزش و ترویج کشاورزی، ص. ۱۴۴-۱۷۹.
۵- خراوچ، م. و. ۱۳۷۹. تحلیل نیازهای صنعتی انتشارات جهاد دانشگاهی، دانشگاه صنعتی اصفهان، ۲۴۹ صفحه.
۶- رازیدی، د. و کاشفی‌نیا، س. و علی‌پور، م. ۱۳۸۱. آجیل، عملکرد عملکرد کندج به اغذیت‌سازی بذر یا سه نوع کود بیولوژیک و مقایسه کاهش پاتوفیلی کود شیمیایی نیتراتین در اصفهان، پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی اصفهان، ص. ۹۸.
۷- رضایی، م. و. شاهی، س. و میرزا، م. ۱۳۸۴. اثر بکتری‌های تی‌ان‌کنده نیتری‌جات بر جوان‌نتی زیره سبز. چهارمین کنگره علمی باستانی ایران، ۱۹-۱۷ آبان ماه، دانشگاه فردوسی مشهد.

