نگهداری بر رشد باکتری

Xanthomonas campestris

چکیده

باکتری‌های جنس Xanthomonas از عوامل بیماری‌برنگی محصولات زراعی بوده که باعث فساد پس از برداشت می‌شوند. خسارت اقتصادی محصولات کشاورزی در نتیجه گسترش سریع باکتری تحت شرایط مطلوب، عدم جوانی زنی بذر آلوده، مرگ گیاهه و اتساد آن‌دی در گیاه بالغ رخ می‌دهد. این پژوهش به صورت آزمایش فاکتوریال با چهار غلظت اساس زیره سبز (0، 2/0، 4/0 و 8/0د.م) و سه سطح اسیدیته (5/0، 7/0 و 9/0، سه تولید باکتری (1/0، 2/0 و 3/0 سولول باکتری در میلی لیتر) و دو دما (2/6 و 2/8 درجه سلسوس) در قابل طرح کاملاً تصادفی در سه تکرار انجام شد. شرکا عمد رشد باکتری براساس کودورت قابل مشاهده بود که 30 روز قرنطین و نتیجه گرفت. حداکثر غلظت بادن‌دارکی و کشندگی اساس لرتن معادل 1/0 و 1/2 تا 3/0 گردید. اساس باید کم‌ترین میزان اصلی تهیه دهنده اساس باشد.

واژه‌های کلیدی:

Cuminum cyminum

حداقل غلظت بادن‌دارکی

حداقل غلظت کشندگی

فعالیت ضدباکتریایی

زمان رسیدن به رشد
پیشیگی‌های اصلی در گیاهان بیماری‌زا Xanthomonas campestris می‌باشد. گونه X. campestris از دسته Xanthomonas، دسته xanthomonadae، پاذقی و ایکاتا که برای این گونه شناسایی شده‌اند. این بакتری عامل پوسیدگی بیماری‌زا و پاتوپی‌های این گونه علاوه لکه برگی در گیاهان ایجاد می‌کند. این بکتری مربوط به جهش‌های متعددی از ریش‌های بیماری‌های ناشی از زنامونادها در گیاهان زراعی مانند گندم، برنج، چنگordin، بیذه و نیز مولتی‌گلی، نعناع، کلم در ایران وجود دارد و اهمیت این محسولات، پراکنشی‌گر و دامنه میزانی وسیع و سرعت خسارت بالای این بکتری پیشگیری و مهار این بکتری را به صد چندان کرده است. این بکتری به ویژه در شرایط آب و هوایی گرم و مرطوب به قبیل گسترش می‌یابد و از فصل به فصل دریگ در بذر آلوه، خاک و حتی به دانه پیش‌بینی شده در بافت‌های گیاهی بالا می‌ماند و به آن‌ها از طریق آب باران به گیاهان مجاور منتقل می‌شود. وجود این بکتری در خاک به‌طور مسئله باعث ایجاد بیماری در گیاه می‌شود بلکه می‌تواند منجر به بیماری‌های مختلف از بردشت و فساد در محصولات و زبان اقتصادی آن‌ها شود.

از راه‌های مهم این بکتری در توانایی استفاده از ارقام مقاوم، پیشگیری از آلودگی خاک استفاده از سری‌های شیمیایی و سوزاندن بقا‌های آلوه اشاره کرد. این روش‌ها مناسب بود و تا حدی مشکلات را مرتفع ساخت، اما مکانیالی از جمله ارافیش شیوع بیماری‌های کاوري، نهایی، انعک سرطانی، از بین بردن جدانگان غیره‌ها، افزایش مقاومت عامل بیماری‌زا دریبار مواد شیمیایی گیاه‌سوزی، ترجیح‌نامه‌پذیری یا تجربه برترهگام سروم، آلودگی محیط زیست و غیره را به همراه آورد. برز در عامل مشکلات نیاز به گیاه‌گری روش‌های مناسب بر سربر مهار عامل بیماری‌زا ضروری ساخته است؛ در این بین استفاده از مواد طبیعی جدای از گیاهان به عنوان مانع امیدبخشی در جهت جایگزینی با مواد سنگین به شمار می‌آید و این مواد اثر سوء بیماری‌های محیطی و محصولات زراعی ندارند. این اساس‌های

8 tymol
9 carvacrol
10 eugenol
11 Cuminum cyminum
12 apiaceae
میری و همکاران، اثر اساس زیره سیب، اسیدیته، سطح تلفیق و...

گیاه متفاوت است و به شرایط اقلیمی محل رویش گیاه بستگی دارد. میوه زیره سیب
خاصیت دارویی دارد. اساس زیره سیب با داده‌های ترکیب‌های مواد آلی‌آلچه و
آلالی‌آلچه، نشان داده که اساس گیاه
است.
مواد و روش ها

شناخت تربیت تشکیل دهنده اساس از دستگاه گاز کروماتوگرافی با استفاده MS ایجاد آن در سلول سیس در نظر گرفته شد. توقف در این مدت از نظر دو دیقیقه بود. مدل 240 درجه سلسیوس با سرعت 15 درجه سلسیوس در دو دیقیقه تحقیق شد. در طی این مدت، هم 200 درجه سلسیوس و 120 درجه سلسیوس بود و از گاز هلیوم به عنوان گاز حامل با سرعت 8 میلی لتر در دیقیقه استفاده گردید. طیف‌گزار جرمی مورد استفاده با ولتاز پوزیسیون 1200 الکترون ولت، روش پوزیسیون و در دیقیقه 240 درجه سلسیوس بود.

ترکیبات اساس در مقایسه با شاخص‌های برداری نسبی مربوط به مواد موجود در این مطالعه با ترکیبات معتبر موجود در آزمایشگاه مربوطه شناسایی شد.

شناخت طیف‌ها بر اساس باکتری اطلاعات جرمی دستگاه کروماتوگرافی گازی، زمان برداری ترکیبات، محاسبه اندیس کوانس و انگل شکست آنها در مقایسه با طیف‌های استاندارد موجود در منابع مختلف انجام گرفت. درصد نسبی هر یک از ترکیبات تشکیل هدنه اساس با توجه به سطح زیر منحنی هر یک از پیک‌های کروماتوگرام دستگاه و مقایسه آن با سطح کل زیر منحنی تعیین گردید.

در این مطالعه از سویه باکتری X. campestris (PTCC: 1673) ویا. campestris (PTCC: 1673) از دریافت‌های این باکتری صنعتی ایران، به عنوان استاندارد استفاده شد.

شناخت طیف‌ها بر اساس آماده‌سازی باکتری جهت تلفیق به محیط کشت این از برگه‌های سرویس استاندارد و دریافت‌های دیگر کشت داده شد. پیل مذکور به مدت 24 ساعت در دمای 50 درجه سلسیوس پرتاب شد. سپس از پرنده‌های ناز شرکت کرده روی محیط کشت برداشت و سوپرسیون معادل استاندارد نمک فارمای به نه‌شده. در این کردن معادل 60% سلول باکتری در میلی لیتر جوش داشت. برای تهیه محیط کشت طبق توصیه شرکت سازنده 20 گرم از پودر محیط معادل 60% دو 1000 میلی لیتر.

1) gas chromatography (Agilent technologies 7890 B, USA)
2) Kovats index
3) nutrient agar
4) McFarland standards
5) Merck, Germany
6) nutrient broth
گزارش شده است که برخی غلظت‌های فضاپیمایی اغلب آنها بسیار واضح است. ولی سازگاری عمل آن به طور کامل درک نشده است. شواهدی وجود دارد که ۱۰/۵ اثر فضاپیمایی خود را از طریق تغییر ساختار و عمل غشای سولولی عامل می‌کند. اجزا اساسی با تقوی در غشاء موجب به تمرد شدن غشاء گرده و فعالیت آن را کاهش می‌دهد و در نهایت منجر به مرگ سولول خواهد شد.[۱۹] این طولانی‌تر از ۱۹ جوز در اساسن زیر به سبب تشخیص داده شد که ۱۹/۸۳٪ اساس را تشکیل می‌داده (جدول ۳). اجرای اصلی اساس شامل پی‌کومینالدیژ به میزان ۵/۳٪ و پی‌سایمی به میزان ۵/۷٪ بودند که با مطالعات قبلی مطابقت داشت.[۱۹]

حادث حالت غلظت پازدارندگی و کشت‌گاه اساس

حادث حالت غلظت پازدارندگی اساس X. campestris باید باکتری عامد ۱٪ و حادث حالت غلظت کشت‌گاهی آن عامد ۲٪ تعیین گردید. در این حالت غلظت‌های باکتری هیچگونه رشد قابل مشاهده‌ای نداشت.

۴ p-cymene
۵ p-cuminaldehyde

نتایج و بحث

نتیجه‌گیری اساس زیر بسیار اساس‌های گیاهی و یا دارای اثرات ضدپاک‌کشی متفاوتی علیه‌که باکتری‌های گرم مثبت و گرم منفی مشابه[۱] اساس‌هایی که دارای اثرات ضدپاک‌کشی فنولی مانند تیموکارب، گاماکتونول و باربیعت، هستند خاصیت ضدپاک‌کشی آن‌ها شدید

۱ Muller hinton agar
۲ R software (ver. 3.1.1)
۳ β-terpinene

یکی از آنتی‌بیوتیک‌ها ممکن است توسط این اکسپرسینگ‌ها برای کنترل میکروب‌ها در محیط‌های حیاتی استفاده شود.
گوران و همکاران (۲۰۱۳) گزارش کردند که کاربرد اساسی گیاه اسپتوفودوس در کشت چند گونه باکتریایی سبب حفظ و بهبود ناماس باکتری‌های موجود در محيط کشت گردید. نتایج حاصل از این تحقیق نیز بانگر اثر اساسی اسپتوفودوس در کشت باکتری زانتومییس کامپسترسیس می‌باشد. [۱۰] سپس همکاران (۲۰۱۰) به منظور بررسی اثرات سد قارچی اساسی های رزماری، اسپتوفودوس و مرنجوش روی بیوب و چعبای ناحیه آزمایش‌ها بود. نتایج آزمایش‌ها نشان داد اساسی مرنجوش در غلظت ۲/۰ میکروگرم بر میلی‌لیتر هوا با طور کامل از رشد قارچ جلوگیری نمود. اساسی‌های رزماری و اسپتوفودوس در غلظت ۱/۶ میکروگرم بر میلی‌لیتر به رشد قارچ بودند. [۱۱]

آزمون ریزی‌سنگی

غلظت اساسی زیره سه اثر معنی‌داری در زمان رسیدن به رشد باکتری داشته است و با افزایش غلظت اساس، طول دوره بازندازگی به طور معنی‌داری افزایش یافته، به طوری که معیار میانگین طول دوره بازندازگی رشد باکتری از ۲۵/۱ روز (۳۰ ساعت) در کمترین غلظت به ۵۷/۶ روز (۳۷۶ ساعت) در بالاترین غلظت رسید. (جدول ۲).

نتیجه‌گیری (۲۰۱۳) در مطالعه‌ای گزارش کرد که با افزایش اسپیده‌ها افزایش یافته در باکتری آمپیا عصاره دانه جعفری روی باکتری پلیکوزاکتریدیوی گیاه کاهش یداده افتاده است. به نظر می‌رسد افزایش اسپیده‌ها سبب رشد بیشتر این باکتری شده است که با نتایج بدست آمده در مطالعه حاضر همخوانی دارد. [۱۱] یکی از عوامل مختلف تأثیر و دما گرم‌سازی‌های گذاری مورد استفاده در این مطالعه و زمان رسیدن به رشد باکتری رابطه معنی‌داری وجود ندارد. در حالی که بین اثر مقیاس غلظت اساس و اسپیده‌ها محيط کشت رابطه معنی‌داری وجود داشت. بیشترین زمان رسیدن به رشد باکتری در غلظت ۰/۸ اساس/اسپیده‌ای معنی‌دار است. اسپیده‌های ۵/۰. سطح تلفیق ۱۰۰ سلول باکتری در میلی لیتر دامغن‌های ۲۴ درجه سلسیوس اسپیده‌های زمان رسیدن به رشد باکتری در غلظت ۰/۸ اساس/اسپیده‌ای معنی‌دار است. اسپیده‌های ۵/۰ سطح تلفیق ۱۰۰ سلول باکتری در میلی لیتر دامغن‌های ۲۴ درجه سلسیوس و بدون اساس مشاهده گردید. (جدول ۲۳). بین نتایج میانگین بیشترین زمان رسیدن به رشد باکتری در غلظت ۱۰ روز و کمترین زمان رسیدن به رشد ۱۹ روز نتایج به دست آمده با مطالعه رایان و همکاران (۲۰۱۴) در رابطه با اثر ضر رپتریا اساسی اسپتوفودوس در رشد باکتری‌های اشترپیک‌کی و زانتومیوس‌های همخوانی دارد. [۲۱]

۱ Helicobacter pylori

۲ Brassica nigra
X. campestris

Table 2) Effect of Cuminum cyminum essential oil, pH, temperature and inoculums’ level on time-to-detection of X. campestris

<table>
<thead>
<tr>
<th>Factor</th>
<th>level</th>
<th>Mean ± SD</th>
<th>95% confidence interval</th>
<th>lower limit</th>
<th>upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration (%)</td>
<td>0</td>
<td>1.25 ± 0.08</td>
<td>1.07</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>4.7 ± 0.07</td>
<td>4.53</td>
<td>4.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>6.62 ± 0.08</td>
<td>6.45</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>15.67 ± 0.09</td>
<td>15.49</td>
<td>15.84</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>5</td>
<td>7.9 ± 0.07</td>
<td>7.75</td>
<td>8.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.22 ± 0.06</td>
<td>7.07</td>
<td>7.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.1 ± 0.08</td>
<td>5.91</td>
<td>6.21</td>
<td></td>
</tr>
<tr>
<td>Inoculums’ level</td>
<td>10^7</td>
<td>7.5 ± 0.06</td>
<td>7.38</td>
<td>7.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10^8</td>
<td>6.62 ± 0.08</td>
<td>6.5</td>
<td>6.75</td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>26</td>
<td>7.29 ± 0.06</td>
<td>7.17</td>
<td>7.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>6.83 ± 0.08</td>
<td>6.71</td>
<td>6.96</td>
<td></td>
</tr>
</tbody>
</table>

* Values shown with the same letter(s) are not significant at p<0.05.

Table 3) The TTD (days) of X. campestris in NB broth as affected by pH, EO concentration, inoculums’ level (IL) and temperatures (T).

<table>
<thead>
<tr>
<th>Factors</th>
<th>EO concentration levels (%)</th>
<th>T (°C)</th>
<th>IL (CFU/ml)</th>
<th>pH</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^5</td>
<td></td>
<td>5</td>
<td>1.58</td>
<td>5</td>
<td>7</td>
<td>17.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1.17</td>
<td>4.5</td>
<td>6.5</td>
<td>16.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.92</td>
<td>6</td>
<td>7.5</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^3</td>
<td></td>
<td>6</td>
<td>1.3</td>
<td>5.5</td>
<td>7.5</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1</td>
<td>4.5</td>
<td>6.5</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1</td>
<td>4.5</td>
<td>6.5</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^5</td>
<td></td>
<td>6</td>
<td>1.1</td>
<td>4</td>
<td>6</td>
<td>15.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.67</td>
<td>3.5</td>
<td>5.5</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.5</td>
<td>5.5</td>
<td>7</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>6</td>
<td>0.75</td>
<td>5</td>
<td>7</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^3</td>
<td></td>
<td>7</td>
<td>0.83</td>
<td>4.5</td>
<td>6.5</td>
<td>13.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1) Effect of *Cuminum cyminum* concentration, acidity and inoculum level in combination on average time to detection of *X. campestris* at 26 and 28°C
чеٔر اثن أسیس، اسیسیت، سطح تلقیح و ... میری و همکاران، اثر اساسی زیره سبز اسیسیت: سطح تلقیح و ... منقابل بین اسیده‌ی مهیط کشت و سطح تلقیح باکتری در روند رسیدن به رشد باکتری از رابطه معيّن دارد. در هر دو رشد‌گزارانی با باکتری X. campestris رشد باکتری به تریب 0.8 روز و 8/5 روز در تیمارهای با سطح تلقیح 0.01 اسیده‌ی معادل 5 و سطح تلقیح 0.01 اسیده‌ی معادل 7 بود (شكل 1) مجموعه و نصرت پور (2013) در مطالعه ای گزارش کردند که با افزایش غلظت اساس آویشن باقی بازارهای‌کننده از رشد باکتری را به شدت افزایش داده است.\(^1\) این اسیده‌ی 5 و 7 منقابل کشت و زمان رسیدن به رشد باکتری اختلال معيّنی وجود داشت در حالی که بین اسیده‌ی 6 و 7 اختلال معیّنی نبود. با افزایش اسیده‌ی طول دوره بازارهای‌کننده با باکتری زانتوموناس کمبیسیس کامکه یافت (جدول 2). در مطالعه‌ای اثر ضدبیاکتیربیای زیره سبز روی چند باکتری گرم منفی و گرم مثبت نشان داد که با نتایج مطالعه حاضر همخوانی دارد.\(^3\) بررسی ارتباط بین سطح تلقیح و دمای نگهداری نشان داد که بیشترین بازارهای‌کننده رشد مربوط به سطح تلقیح 0.1 و دمای 26 درجه سلسیوس و به مدت 71/7 روز می‌باشد (شكل 1). اثر منقابل هر چهار عامل غلظت اساس، اسیده‌ی، سطح تلقیح باکتری و دمای نگهداری در روند رسیدن به رشد باکتری در جدول 3 نشان داده شده است. کمترین و بیشترین زمان رسیدن به رشد باکتری در روز 19 و 9/4 ساعت در حالت تبیری افت و دمای نگهداری به مدت 16 و دمای 26 درجه سلسیوس و به مدت 71/7 روز می‌باشد (شكل 1). کمترین و بیشترین زمان رسیدن به رشد به تریب از 16 ساعت تا 19 روز گزارش شد (جدول 3). اثر بازارهای‌کننده اساس آویشن برای کبسیدریگری ثابت شده است.\(^1\) سنجوی و همکاران (2013) با بررسی اثر ضدبیاکتیربیای اساس نشان دادند، رزماری، میخک هندی، زیره سبز و سماق را علیه باکتری‌های ویری آلژنسیکوس، لیستریا مونوفیتوس و اشتریا کلی اعلام کردند که اساس میخک هندی عملکرد قوی‌تری داشته و باکتری‌ها نسبت به آن حساس تر بودند و اساس رزماری ضعیفتری و باکتری‌ها نسبت به آن در مقایسه با سایر اساس‌ها مقاومتر بود.\(^2\)
References

Table 4: Analysis of variance of different treatment on X. campestris

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Df</th>
<th>Mean squares</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>C^1</td>
<td>3</td>
<td>1362.604</td>
<td>4.845</td>
<td>0.0001</td>
</tr>
<tr>
<td>pH</td>
<td>2</td>
<td>41.672</td>
<td>148.167</td>
<td>0.0001</td>
</tr>
<tr>
<td>D^2</td>
<td>1</td>
<td>27.562</td>
<td>98.000</td>
<td>0.0001</td>
</tr>
<tr>
<td>C*D</td>
<td>3</td>
<td>7.562</td>
<td>26.889</td>
<td>0.0001</td>
</tr>
<tr>
<td>C*T</td>
<td>3</td>
<td>0.187</td>
<td>0.667</td>
<td>0.575</td>
</tr>
<tr>
<td>pH*D</td>
<td>2</td>
<td>0.609</td>
<td>2.167</td>
<td>0.120</td>
</tr>
<tr>
<td>pH*T</td>
<td>2</td>
<td>0.203</td>
<td>0.722</td>
<td>0.488</td>
</tr>
<tr>
<td>D*T</td>
<td>1</td>
<td>0.062</td>
<td>0.222</td>
<td>0.638</td>
</tr>
<tr>
<td>CpHD</td>
<td>6</td>
<td>1.241</td>
<td>4.315</td>
<td>0.001</td>
</tr>
<tr>
<td>CpHT</td>
<td>6</td>
<td>0.391</td>
<td>1.389</td>
<td>0.227</td>
</tr>
<tr>
<td>CDT</td>
<td>3</td>
<td>0.188</td>
<td>0.667</td>
<td>0.575</td>
</tr>
<tr>
<td>pHTD</td>
<td>2</td>
<td>0.203</td>
<td>0.722</td>
<td>0.488</td>
</tr>
<tr>
<td>CpHD*T</td>
<td>6</td>
<td>0.516</td>
<td>1.833</td>
<td>0.101</td>
</tr>
<tr>
<td>Error</td>
<td>96</td>
<td>0.281</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^C= Concentrations ^T= Temperature ^D= Inoculum level
The effect of *Cuminum cyminum*, acidity, temperature and inoculums’ level on the growth of *Xanthomonas campestris*

Nazanin Miri
Master of seed science and technology
Department of Agronomy and Plant Breeding
Mashhad Branch
Islamic Azad University
Mashhad, Iran
Email: nazy.miri@gmail.com

Roya Rezaeian-Doloei* and Reza Sadrabadi Haghigh
Assistant professor and professor
Department of Agronomy and Plant Breeding
Mashhad Branch
Islamic Azad University
Mashhad, Iran
Emails: royarezaeian@mshdiau.ac.ir (corresponding author)
rsadrabadi@mshdiau.ac.ir

Received: 22 April 2015
Accepted: 04 October 2015

ABSTRACT The *Xanthomonas* genus is one of the most important groups of plant pathogenic bacteria that cause post-harvest spoilage. Substantial crop losses may result from the rapid spread of the bacteria under favorable conditions, lack of seed germination, seedling death and vascular obstruction of plant. The aim of this study was to investigate the combined effects of different concentrations of *Cuminum cyminum* essential oil (EO; including 0, 0.2, 0.4 and 0.8%), three levels of acidity (5, 6 and 7), two inoculums’ level (103 and 105 CFU/ml) and two incubation temperatures (26 and 28˚C) on the growth of *X. campestris* in the nutrient broth medium in a completely randomized design with three replications. Growth was monitored by visible turbidity during a 30-day period. The minimum inhibitory concentration and minimum bactericidal concentration of EO against *X. campestris* was 1 and 2% respectively. According to the results, P-cuminaldehyde was the main component, with a content of 30.5%. The statistical analysis of data showed that the maximum time to detection of bacteria (19 days) in the concentrations of 0.8% EO, pH of 5, the inoculum level of 103 CFU/ml and incubation temperature of 26˚C and the minimum time to detection (16 hours) in the inoculums level of 105 CFU/ml, pH of 7, 28 °C and no EO was observed. In addition to the concentration of *Cuminum cyminum* EO as an antimicrobial agent, acidity of medium is also considered the factors influencing the growth of *X. campestris*. By decreasing the pH, the time-to-detection of bacteria was increased. In conclusion, using a combination of different factors can inhibit the growth of bacteria, significantly.

Keyword:
- *Cuminum cyminum*
- minimum inhibitory concentration
- minimum bactericidal concentration
- antibacterial effect
- time-to-detection